TrisKem International

New Developments in TrisKem 2022 RRMC – Atlanta, 31/10-04/11/2022

Aude Bombard

65th RRMC - Atlanta (10/31-11/04/2022) - UGM session

Overview

- New Resins
 - TK-TcScint
 - TK201
 - TK202
 - CL Resin
 - TK200
 - TK221
- Updates on TK400 Resin
- Under development
 - Extractive membranes
 - TK102
 - Radium Resin
 - TK222
 - TK225
 - « Industrial » resins
- Other projects

Tc-99 (difficult to measure – DTM Radionuclide) – 100% beta emitter

Interest in decommissioning and radioactive waste management and in Nuclear medecine

TEVA resin allows for Tc separation but quantitative elution needs highly acidic medium

> 1+2 resins developped for load with both acidic or alkaline media and specific elution in slightly alkaline or water

TK-TcScint resin TK201 resin TK202 resin

- Plastic scintillating beads impregnated with selective extractant
- Developped by university of Barcelona
 - García, Tarancón, Bagán
- « TK-ElScint » product line
- 1st product: « TK-TcScint »
 - Quaternary ammonium + phase modifier (similar selectivity to TEVA)
 - Environment/decommissioning => Tc-99 by LSC
 - Other radionulides of interest: Sr, Pb, β -emiters and gross alpha

TK-TcScint

- Direct mesurement of the cartrige by LSC after loading and rinsing
 - NO elution/evaporation/aliquoting => easy automatisation
- Chemical yield via Re/ICP-MS in eluates.

TK-TcScint – Uses and results

Use of TK-TCScint in aqueous/urine samples for Tc-99
 determination (Garcia et al., TKI UGM Cambridge 2018)

MOP:

2ml cartridge using Vacbox 1mg Re carrier Precondition with 2ml 0.1M HCl Load 10ml sample in 0.1M HCl Rinse 4x2ml DI H₂O

<u>Results</u>

Recovery of Rhenium (by ICP-OES)	> 98.8 %
Recovery of ⁹⁹ Tc (by LS):	> 98.8 %
⁹⁹ Tc Detection Efficiency (%):	89.5(0.6)
Background (cpm):	1.09
Quenching Parameter (SQP(E)):	787(7)

TK-TcScint for the Determination of Tc-99 in WATER samples (Garcia et al., TKI UGM Cambridge 2018)

<u>MOP</u>:

Spike sample to achieve 0.1M HCl Rinse with DI H_2O

Results:

Sample	Activity (dpm mL ⁻¹)	Activity Calc (dpm mL ⁻¹)	Error (%)
Sea Water	24,3	23,0	-5,3
Sea Water	24,3	25,1	3,3
Sea Water	24,2	22,8	-6,2

TK-TcScint for the Determination of Tc-99 in URINE samples (Garcia et al., TKI UGM Cambridge 2018)

<u>MOP</u>:

100ml sample

Add 10 mL of 65% HNO ₃ and evaporate to
dryness
Dissolved in 5 mL of 65% HNO ₃
Evaporated to dryness
Heat @ 550 °C in a muffle oven for 30 min.
Dissolved in 3mL of HNO ₃
Treated with 100 mL of D.D. water
Add 5 mL of H_2O_2 and heated to 90 °C for 1 h
Rinse with DI H ₂ O

<u>Results:</u>

Sample	Activity (dpm mL ⁻¹)	Activity Calc (dpm mL ⁻¹)	Error (%)
Urine	0,43	0.44	2,4
Urine	0,46	0,42	-6.5

MDA (100 mL, 24h): 0.036 Bq L⁻¹

TK201 Resin

 R^1

R2

- Based on tertiary amine (weak Anion Exchanger) impregnated on inert support
- In acidic medium, exchange of the counter anion

TK201 Resin – Elution curve for Re(Tc)/Mo separation

<u>MOP:</u>

Load + Rinses in 0.01M HNO_3 Elution in 0.1M NH_4OH

Results:

- Clean separation of Re in 6BV 0,1M NH₄OH
- Elution of Re also possible with 1M HNO₃
- No retention of other elements studied

TK202 Resin

- Polyethylene Glycol (PEG) grafted on inert support
- Aqueous biphasic system (ABS)
- Retention of chaotropic anions e.g; TcO_4^- in the presence of kosmotropic anions (SO₄²⁻, CO₃²⁻, OH⁻, MoO₄²⁻,...)
- For samples rich in Mo: Tc yield > 90% for 6 8g Mo per g TK202

Dw values for Tc, Re and Mo on TK202 Resin, at varying NaOH and [10/31-11/Dw values for Tc in 5M NaOH using 40 mg TK202 Resin, concentrations. Tc data taken from Cieszykowska et al.

TK202 Resin

- Retention of Tc from concentrated NaOH medium (5 - 7M)
 - Alkaline Fusion e.g. decommissioning samples
 - Dissolution of Mo target
 - Clean separation from other tested elements
 - => CAREFUL regarding other chaotropric anions (e.g. I⁻)
- Re can be used as internal standard
- Elution in a small volume of water
 - Eluat remains alkaline
 - Load on CEX to neutralise medium + get rid of Na⁺ THEN
 - Load on aluminum oxide to get rid of Mo traces + elution in 0.9% NaCl mediums

Re/Tc separation from Mo on TK202 Resin

Re separation from selected elements on 2 mL TK202 Resin cartridge, 65th RRMC - Atlanta (10/31 11/04/2022) - UGM Load and rinse at 1 BV/min, elution at 0.25 BV/min. 12

CL Resin - Determination of CI-36 and I-129 in decommisionning samples

CI-36 and I-129 (volatile and long-lived period radio-nuclides)

- CI-36(301243y, beta emitter, Emax beta=709.682keV (98.1%), decays to Ar-36 + Emax beta=120keV (1.9%) decays to S-36. Ar-36 decays to S-36)
- I-129(1.5x107y, pure beta emitter, Emax=194 keV, decays to stable Xe-29)
- Monitoring of NPP, decommissioning, radwastes, monitoring in environment with I-129
- CL resin « activated » with Ag⁺
- Retention as chloride and iodide complexes
 - Reduction might be needed (e.g. with Sn(II))
- Simple and fast method
- > Chemical yield by e.g. ion chromatography
- LSC measurement (and/or ICP-MS)

CL Resin – Separation scheme

- •Load Ag+ from acidic, neutral or slightly alkaline conditions (optimized condition is 1M H₂SO₄) to activate resin
- Load sample preferably in same conditions
- (carriers are I^-/IO_3^- and CI^-)
- •Rinse with 10ml of D.I. Water
 - Eliminates matrix elements
- Elute chloride with 5ml of 0.1M ${\rm SCN}^{\scriptscriptstyle -}$
 - Directly mixed with LSC cocktail and counted
- Rinse with 10ml of 1% NaOH
 - Increases iodide yield
- Elute iodide with 5ml of 0.35M Na₂S, mix with LSC cocktail (resin changes color)
 - ➤ Fume hood...
 - Directly mixed with LSC cocktail and counted
- Yields in general > 90 100% 65th RRMC Atlanta (10/31-11/04/2022) UGM

Details about the exchanges on CL Resin

Sample load after resin activation with Ag⁺:

 $R-Ag^+ + Cl^- \Rightarrow R-AgCl$ $Ks_{AgCl} = [Ag^+]x[Cl^-] = 10^{-9.5}$ $R-Ag^+ + l^- \Rightarrow R-Agl$ $Ks_{Agl} = [Ag^+]x[l^-] = 10^{-16.07}$

\succ Cl⁻ Elution :

 $Ks_{AqCl} = [Ag^+]x[Cl^-] = 10^{-9.5}; Ks_{AqSCN} = [Ag^+]x[SCN^-] = 10^{-11.7}; Ks_{Aql} = [Ag^+]x[l^-] = 10^{-16,07}$

R-AgCI + SCN⁻ → R-AgSCN + CI⁻R-AgI + SCN⁻ ← R-AgSCN + I⁻

 \succ I⁻ Elution:

 $Ks_{Ag2S} = [Ag^+]^2 x[S^{2-}] = 10^{-24,1}$; $Ks_{AgI} = [Ag^+] x[I^-] = 10^{-16,07}$

 $2 \text{ R-Agl} + \text{S}^2 \rightarrow (\text{R-Ag})_2 \text{S} + 21^2$

CL Resin – CI-36 Applications

CI-36 in spent resin via Pyrolyser (several g samples, Warwick et al.)

- Thermal decomposition of the samples at 900°C (ca. 2h)
- System flushed with humidified air
- Decomposition products trapped in bubbler containing alkaline solution
- > 6 mM Na₂CO₃ used (yield > 80%), Alternative: 1M NaOH
- Direct load onto CL resin, additional rinse with 0.1M H₂SO₄ to remove C-14

Column separation yield >95%, high decontamination factors

CL Resin - I-129 in spent resin via AMS

(Nottoli E., Bienvenu P., Labet A., Bourlès D., Arnold M., Bertaux M., Accurate determination of 129I concentrations and 129I/137Cs ratios in spent nuclear resins by Accelerator Mass Spectrometry, Applied Radiation and Isotopes, RISKEM http://dx.doi.org/10.1016/j.apradiso.2014.01.010)

- Resin mineralized by
 - microwave digestion $(HNO_3/HCIO_4)$ or
 - oxygen bomb combustion (iodine trapped in NaOH)
- Iodine purified on CL Resin using a modified purification method
 - Load and Rinse 1M NaOH
 - Cl⁻ elution via SCN⁻, l⁻ elution via S²⁻
- Samples prepared for AMS measurement by:
 - oxidation of the sulphide to sulphate with H_2O_2
 - removal of the sulphate by precipitation with Ba / centrifugation
 - Agl precipitation.

CL Resin - I-131 in biological samples and hospital effluents

Talanta 206 (2020) 120224 Contents lists available at ScienceDirect Talanta journal homepage: www.elsevier.com/locate/talanta

Fast-response flow-based method for evaluating ¹³¹I from biological and hospital waste samples exploiting liquid scintillation detection

Donagi Esparza^{a,b}, Manuel Valiente^c, Antoni Borràs^a, Marina Villar^c, Luz O. Leal^b, Fernando Vega^c, Víctor Cerdà^d, Laura Ferrer^{a,*}

^a Environmental Radioactivity Laboratory (LaboRA), University of the Balearic Islands, Cra. Valldemossa Km 7.5, 07122, Palma, Spain

^b Environment and Energy Department, Advanced Materials Research Center (CIMAV) S.C., Miguel de Cervantes 120, Chihuahua, Chih., 31136, Mexico

^c Radiopharmacy Service, Son Espases University Hospital, Cra. Valldemossa 79, 07120, Palma de Mallorca, Spain

^d Department of Chemistry, University of the Balearic Islands, Cra. Valldemossa Km 7.5, 07122, Palma, Spain

- Lab-on-valve analysis with 135mg CL resin/extraction
- >80% recovery of iodine
- MDA 0,05Bq I-131

TK200 Resin

- Resin based on TOPO extractant
- Extracts U, Th, Pu at pH 2 => preconcentration and purification of selected actinides on same column (mainly U)

=> automized separations/ICP-MS

- U/Th separation from water samples
- Efficient U/Pu separation from soil/sediment samples (up to 2g)
- Other applications:
 - Nuclear medecine
 - Ga-68 production (in combination with ZR Resin)
 - on-going: Pt/Ir, Zn/Cu (Zn production, Zn removal), Sc production

TK200 Resin – Dw Studies

- Retention of Am < 0,1M HNO₃;
- U/Th/Pu uptake over the whole acidity range studied;
- High uptake of Bi from 0,01 2M HNO₃ => possibility to separate from Pb in case of MS measurement;
- Uptake of Sn from $0,1 10M \text{ HNO}_3$ (alternative to TBP Resin).

- •No retention of Am ;
- U/Th uptake over the whole acidity range studied;
- Pu uptake from 3-10M HCl no retention below 3M HCl;
- High uptake of Bi from 0,01 3M HCl => possibility to separate from Pb in case of MS measurement;
- High uptake of Sn over the whole acidity range studied (alternative to TBP Resin)

TK200 Resin – Elution studies

- Possibility to preconcentrate Am, U, Th and Pu(IV) in 0,1M HNO₃ (or pH2) and to subsequently elute in separate fractions
- Tests made at Radanal (N. Vajda)
- Test 1 in 900mL tap water @ pH 1 spiked with Am/Pu/Th

Load with 0,1M HNO₃; Am eluted with 20mL 3M HNO₃; Th eluted with 20mL 4M HCl; Pu eluted with 20mL 4M HCl/0,01M KI

SKEM

TK200 Resin – Elution studies

• Test 2 in 900mL tap water @ pH 1 spiked with Am/Pu/Th/U

TK200 Resin – Elution studies for U/Th separation from acidic solutions

Load+ Rinse	5mL Load 3 м HNO3 + 5mL 3 м HNO ₃		Load+ Rinse	5mL Load 3 m HNO ₃ + 5mL 3 m HNO ₃
Th 1	10 mL 0.1 м HCl-0.1 м oxalic acid		Th_1	10mL 0.1 m HCl-0.1 m oxalic acid
	5 mL 0.1 м HCl-0.1 м oxalic acid		Th_2	5 mL 0.1 m HCl-0.1 m oxalic acid
	5 mL 0.1 м HCl-0.1 м oxalic acid		Th_3	5 mL 0.1 m HCl-0.1 m oxalic acid
U_1	10 mL 0.1 м Ammoniumoxalate pH 9		U_1	10 mL 0.1 m NaHCO ₃
U_2	5 mL 0.1 м Ammoniumoxalate pH 9		U_2	5 mL 0.1 m NaHCO ₃
U_3	3 5 mL 0.1 M Ammoniumoxalate pH 9		U_3	$5 \text{ mL } 0.1 \text{ m } \text{NaHCO}_3$
100% 90% 80% 70% 60% 10% 30% 20% 10% 0%	450mg TOPO U Th		100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%	450 mg TOPO U Th

Th selectively separated from U and recovered quantitatively U quantitatively recovered with 15mL of various solutions depending on needs

U/Th separation on TK200

- Load: 3M HNO₃ or \geq 1L pH2 (HNO₃)
- Very clean U/Th separation
- Alcaline oxalate instead of carbonate •

TK200 Resin - U/Pu separation (Wang et al – 2019)

=> U remains fixed on resin in these conditions

TK200 Resin – Conclusions

- Preconcentration of actinides from pH1-2 solutions => medium usually used to preserve samples for storage and prior to analysis
- Th/U and U/Pu Separations are efficient
- Possibility to extract/concentrate Sn and Cd in HCl and elute in low HNO₃ concentration.
- Zr/Hf are well extracted in HCl (1-10M) and HNO₃ (whole studied range)

TK221 Resin

(Papp, I., Vajda, N. & Happel, S. An improved rapid method for the determination of actinides in water. *J Radioanal Nucl Chem* **331**, 3835–3846 (2022). https://doi.org/10.1007/s10967-022-08389-9)

Resin based on a mixture of diglycolamide and phosphine oxide + traces long chained alcohol on inert support.

- Main applications in radpharm
- Applications for the separation of actinides

TK221 Resin (Papp, I. et al. J Radioanal Nucl Chem 331, 3835–3846 (2022). https://doi.org/10.1007/s10967-022-08389-9)

TK400 Resin - Fe Separation

- Separation of Fe/Nb/Mo in concentrated HCl medium on TK400
 - Most of other element present in solution are eluted during load and rinses (HCl 9M et 5M)
 - Fe/Nb/Mo eluted in diluted HCl medium => separation e.g. on ZR Resin

- TK400 also used to separate Nb (and Fe) from Zr or Pu(-241)
 - Zr-93 in decommissioning sample=> method under development (with UTEVA Resin)
 - Capacity determined @ ~ 20 mg Fe/ml TK400 Resin in 9M HCl and a load solution @ 10mg Fe/ml
- TK400 used in Radpharm (presentation by S. Happel)

SKEM

65th RRMC - Atlanta (10/31-11/04/2022) - UGM session

30

- New product line: impregnated filtering membrane (MF)
 - Fast flow rates
 - Use with water samples (1 5L),
 But also
 - Use as Passive Sampling (DGT)
 - In development (including procedures):
 - TK100 (Sr, Pb, Zn), TK101 (Pb, Ra)
 - CL Resin (radio-iodine)
 - TK201 (Tc, Re)
 - Calixarenes (Ra, Cs)

• ...

Coming products – impregnated filtering membranes

TK201 membranes: Re separation

Product description: The disks can be used for the purification and concentration of Tc from aqueous samples. TK201 disk provides a large surface area for sample contact.

Re is used as carrier and chemical homolog of Tc

MOP:

Loading solution: 1L of tap water spiked with Mo, Cs, Re, Ru, Sr and U acidified with HNO₃ to pH 2.

25mL 30% H_2O_2 added + mixed and heated to 60°C for 60min, then cooled to RT. Steps of the experiment:

- PC: 50mL 0,01M HNO₃
- Loading 1L of A0 after activating it with 25mL of H₂O₂ (10mL/min),
- Rinse1: 10mL of 0.01M HNO₃,
- Rinse2: 20mL of DI. H₂O
- Elution: 20mL of 2M NH₄OH

	Load	Rinse 0,01M HNO3	Rinse H2O	Elution 2M NH4OH	Load+ Rinse
Мо	93,0%	8,3%	0,8%	5,5%	102,1%
Cs	101,3%	0,1%	0,0%	0%	101,3%
Re	0,0%	6,2%	0,3%	106,6%	6,5%
Ru	101,3%	0,5%	0,5%	0,4%	102,2%
Sr	100,7%	0,3%	0,1%	0,0%	101,0%
U	100,0%	1,1%	0,9%	0,4%	102,0%

TK201 membranes: Tc separation

fraction		1st pa	rallel	2nd parallel		3rd parallel	
		eluted %	unc %	eluted %	unc %	eluted %	unc %
1	Ef1	LD	-	LD	-	LD	-
2	Ef2	LD	-	LD	-	LD	-
3	Ef3	LD	-	LD	-	LD	-
4	Ef4	LD	-	LD	-	LD	-
5	R1	LD	-	LD	-	LD	-
6	R2	LD	-	LD	-	LD	-
7	R3	LD	-	LD	-	LD	-
8	R4	LD	-	LD	-	LD	-
9	R5	LD	-	LD	-	LD	-
10	R6	LD	-	LD	-	LD	-
11	El1	81.5%	0.5	79.6%	0.5	83.2%	0.5
12	El2	10.1%	1	13.1%	1	11.4%	1
13	EI3	3%	2	1.9%	3	1.9%	3
14	El4	1%	5	1.0%	4	0.9%	5
15	EI5					0.4%	9
16	El6					0.1%	20

Eluent yield %	95%	96%	98%
Total yield %	95%	96%	98%

- Tc fully retained on TK201 disc from 1 L tap water acidified with HNO₃ @ pH 2 spiked with Tc,
- <u>NO</u> Tc leakage detected during loading nor rinsing steps,
- > 95% of Tc eluted/recovered with 20 mL 20% 20% 65th RRMC - Atlanta (10/3140% 04 session 0%

TK201 membranes: Bi/Pb separation

<u>MOP</u>:

- Pre-conditionning : 10mL 10%EtOH + 5ml 1M HCl
- Load : 100mL solution 1M HCl spiked with 0,1µg/ml Pb,
 Bi flow-rate 10ml/min (600ml/h)
- Rinses : 3x10mL 1M HCl

Results:

Metal	Load + Rinses fraction yield (%)
Pb	94 +/- 1
Bi	<1%

- Pb is not retained on TK201
- Bi fully is retained
- Possibly Po is retained => to be tested

Under development – TK102 Resin

-Modified version of SR Resin

- Same crown-ether
- Solvent, inert support and ratios => different
- Work by Illarion Dohvyi (Poster during ERA14), Marine Bas, Soumaya Khalfallah, Nora Vajda, Steffen Happel
- -Separating Methods under development

TK102 Resin - Determination of Kd values

Fig. 1: Distribution coefficients of selected elements on TK102 Resin in HNO₃

 ▶ Sr, Ba, Pb and TI show high D_W in HNO₃

Fig. 2: Distribution coefficients of selected elements on TK102 Resin in HCl

► Pb, Tl, Sn, Sb, Ga show hight D_W in HCl

Fig. 3: Distribution coefficients of Sr on TK102 Resin in

3 M $\mbox{HNO}_{3}\mbox{ in the presence of different salts}$

 \blacktriangleright D_w Sr decreases by 30% with NaNO₃ up to 1 M,

▶ no effect of KNO_3 and $Ca(NO_3)_2$ up to 0,05 M.

TK102 Resin - Determination of capacity (column experiment)

Fig. 4. Sorption curves of Sr, Ba and Pb on TK102.

Table 1 TK102 capacities for Sr, Ba, Pb in 3 M HNO₃ from results of different experiments.

		Capacity in			Langmuir	Maximum
)2	Flement	column	DEC, mg/g	TDEC, mg/g	maximum	theoretical
02	Liement	experiment,			capacity,	capacity,
02		mg/g			mg/g	mg/g
	Sr	41.6	27.2	40.9	39.7	45.5
	Ba	12.8	6.7	19.9	*	70.8
	Pb	94.1	74.3	97.2	98.0	106.9

* – cannot be determined under the conditions studied due to limitations in the solubility of $Ba(NO_3)_2$ in HNO₃.

TK102 Resin - Determination of capacity (Langmier isotherm)

Fig. 5. Sr sorption isotherms with TK102: $q_e - C$ plot (a), linearized in coordinates: $1/q_e - 1 / C$ plot (b),

$$\frac{1}{q_e} = \frac{1}{K_L \cdot q_m \cdot C_e} + \frac{1}{q_m}$$

TK102 Resin – Elution curves comparison Vs SR Resin regarding Sr

TK102 Resin vs SR resin: Sr elution study in 8M HNO₃ load medium

Resins TK102 and SR similar for the separation of elements Th/U/Pb/SR/Ca/Bi/Y/Ca and Ba

TK102 Resin – Elution curves comparison vs SR Resin regarding Pb

TK102 Resin vs SR resin: Pb elution study with 2M HCl loading medium

Resins TK102 and SR similar for the separation of elements Th/U/Pb/SR/Ca/Bi/Y/Ca and Ba

65th RRMC - Atlanta (10/31-11/04/2022) - UGM

TK102 Resin – Ba/Ra behaviour vs SR

- Ra eluted in the 6 BV @ 3M HNO₃
- Sr/Pb and Ba remained fixed on resins
- Ba on TK102 => possibility to separate Ra and Ba (conditions and tests to be continued)

Volume (BV) Elution study - Ra separation from Ba on SR Resin in 3M HNO₃ - Ra data courtesy of N. Vajda (RadAnal)

Under development – Radium Resin for environmental purposes

 Work done by S. Khalfallah and continued with Dr. Fenqgi XU

Background: Ra separation techniques

- Fractional precipitation RaCl₂
- Ion exchange columns: ammonium citrate/EDTA
- Co-precipitation: BaSO₄/BaCO₃
- Synthetic clay: Na-4-mica (Na₄Al₄Si₄Mg₆O₂₀F₄•xH₂O)
- MnO₂ (resin, disks, fibers): Most common used procedure

Alternative approach

MRT: Molecular Recognition Technology

Non-ion exchange process, using specially designed organic chelating agents: (10/31-11/04/2022)-UGM

Our developed Ra resins

- Ra ion radius ≈ 1.7 Å: adapted cavity
- Chelating agent choice
 - Ra hard Lewis acid: Oxygen donor
 - Ra coordination sphere : 8-12 (solid phase)
 - → Chelating agent: Ether crown derivative

- Solid Support: SiO₂ 100 mesh.
- Spacer: short alkyl chain.

- Solid Support: aliphatic polymer (acrylic ester)
- 65th RRMC Atlanta [10/ Solvent: Fluorinated alcohol

Resin applicability conditions: effective pH range

- No sorption was detected for $pH \leq 3$ (Grafted resin), $pH \leq 4$ (Impregnated resin),
- Maximum adsorption is reached over pH 5 (grafted resin) and over pH 6 (impregnated resin)
 - In acidic conditions the extractive molecule is protonated and no neutral complexes can be formed in the presence of Ra²⁺
 - With the organic solvent, the deprotonation is delayed.

Grafted Ra-Resin: kinetics behavior investigations

Ra uptake (pH=7)

 \rightarrow > 80% of ²²⁶Ra²⁺ adsorbed after 10 min of contact.: Rapid kinetics

Ra desorption (pH<0)

→ Rapid desorption and reversible process:

Starting material **Regeneration**

Effect of salt on Ra adsorption on Grafted Ra resin (GR)

Sorption of Ra and Ba on GR in salty waters; m/V of 1 g.L⁻¹. (A) Effect of the type of salt and its concentration on Ra adsorption; pH=7.0 \pm 0.1;. (B) Effect of the pH on Ra adsorption in 0.1M NaCl. (C) Sorption isotherm in concentration for Ba in the presence of 9.2 10⁻³ M of NaCl.

Application: results from French mineral waters

Ra uptake tests using different spiked chosen waters

- Both graphted and impregnated resins work @pH>3-4
- No sorption below pH 3
- For waters rich in salts, Ra uptake is impacted
- Resin under further testing

Under development

• TK222

-TEH-DGA version of TK221 resin

• TK225

- -Resin based on TO-DGA and ionic liquid
- -Selectivity similar to DGA,N Resin
- Presence of ionic liquid => increase of the selectivity towards trivalent elements (difficult to remove from the resin)

- Requests from hydrometallurgy area
 - Possible applications in decontamination and valorisation of effuents or decontaminent (e.g. acid)
- Different resins
- Bigger particle size support ~400 600µm
- Higher amount of resins requested
 - -Challenge: supply of extractant and inert support
 - Extractants: sufficient quality, low costs, high quantities
- Increase of production capacity for these resins

see S. Happel's presentation after the break

Thank you for your attention!

65th RRMC - Atlanta (10/31-11/04/2022) - UGM session

in

f

y

Expertise in Separation Chemistry