RAPID DETERMINATION OF ACTINIDES IN WATER SAMPLES USING TEVA AND TK221 RESIN CARTRIDGES

*Nóra Vajda – István Papp** RADANAL Ltd., Budapest, Hungary *ISOTOPTECH Co., Debrecen, Hungary

in co-operation with

Steffen Happel TRISKEM Int. SAS, Bruz, France

eUGM, Nov 24, 2021

Contents

Properties of TEVA and TK221 resins

Models: Separation of actinides on TEVA Separation of actinides on TK221

Determination of actinides in tap water Determination of actinides in sea water to develop combined procedure for the selective separation of Pu, Am-Cm, U, Np, Th using **chromatographic resins.**

The procedure should be

- adequate for water sample
- adequate for measurement by α spectrometry
- rapid
- robust

to analyse actinides of elevated activities

Analytical applications:

process water

contaminated water (drinking, surface, ground, sea) in emergency situation.

to develop combined procedure for the selective separation of Pu, Am-Cm, U, Np, Th using **chromatographic resins.**

The procedure should be

- adequate for water sample
- adequate for measurement by α spectrometry
- rapid
- robust

to analyse actinides of elevated activities

Analytical applications:

process water

contaminated water (drinking, surface, ground, sea) in emergency situation.

Resins of high distribution ratios and selectivities for actinides are needed.

Properties of actinides on specific resins

Single column option?

Multi-column option?

one resin retains all actinides resins retain certain actinides separation is sensitive to the conditions more robust

® Triskem International homepage: <u>https://www.triskem-international.com/ resins-and-accessories.php</u>

k' capacity factors of An's on EC resins

in HNO₃

k' capacity factors of An's on EC resins

k' capacity factors of An's on TEVA resin

in HNO₃ and HCl

TEVA from HNO₃

Load from 3M HNO3: Pu(IV), Np(IV), Th

 \rightarrow effluent: U(VI), Am(III)

Elution possibilities: from 9M HCl: Th

from 0.1M HCI: Pu(IV), Np(IV)

from 9M HCl/Ti³⁺: Pu(III)

k' capacity factors of An's on TRU resin

in HNO₃ and HCl

TRU from 3M HNO₃ 106 IX₁ X₀ TX Pu (IV) 105 Np (IV (Am) 104 Γh (I) U 103 U (VI) (111) 102 101 Np (V) 100 10-1 10-2 100 101 10-2 10-1

After removal of Pu, Np, Th

Load from 3M HNO3: U(VI), (Am) → effluent: (Am)

from 0.25M HCI: Am

Elution possibilities: from 0.1M NH₄HC₂O₄: U(VI)

k' capacity factors of An's on DGA resin

from HNO₃ and HCl

DGA from HNO₃

DGA from HCl

Load from 3M HNO3: Am(III), (U) → effluent: (U)

Elution possibilities: from 0.25M HCI: Am

TK221 resin

Combination of TRU resin and DGA resin

Ln's

Pu

Np

Th

Am

U

Designed for

- separation of **lanthanides**, e.g. ¹⁷⁷Lu
- separation of **actinides**

Out of natural matrix elements (alkali, alkaline earth, Al) only Ca is slightly retained from HNO₃.

Many III and IV valent elements (e.g. Fe, Zr) are well retained from HNO₃.

Product sheet: TK221 Resin, <u>https://www.triskem-</u>

international.com/scripts/files/60cb473fbbe7e8.32187398/PS TK221-

Resin_EN_210607.pdf

S. Happel: "An overview over some new extraction chromatographic resins and their application in radiopharmacy" presented on the 4th of June 2019 at the 102nd Canadian Chemistry Conference and Exhibition (CCCE 2019) in Quebec City, QC N. Vajda et al. (RadAnal): "Report: Investigation on TEVA/TK221 resins for separation of actinides", Budapest, April 2021

Basic concept

Actinides pre-concentration with Ca phosphate co-precipitation

Basic concept – extended for Pu/Np separation

Actinides pre-concentration with Ca phosphate co-precipitation

Optimization of the EC separation

Optimization of Am/U separation on TK221

Model simulating water sample

Ca phosphate co-precip. Fe and Ca in the load

Oxidation state adjustment: sulfamic acid/ascorbic acid/ NaNO₂

Tracers: individual: ²⁴¹Am, ²³³U about 50 Bq in each test

Measurement by LSC

Optimization of Am/U separation on TK221

Model simulating water sample

Tracers: individual: ²⁴¹Am, ²³³U

Good Am/U separation by increased eluent volume!

Separation of Am, U, Th, Pu on TEVA/TK221 and TK221

Model simulating water sample

Tracers: individual: ²⁴¹Am, ²³³U ²³⁰Th, ²³⁹Pu

Separation of Th, Pu(Np), Am, U on TEVA/TK221 and TEVA

Model

simulating water sample, Tracers: individual: ²⁴¹Am, ²³³U, ²³⁰Th, ²³⁹Pu

Results of optimization

Model simulating water sample

Ca phosphate co-precip. Fe and Ca in the load

Oxidation state adjustment: sulfamic acid/ascorbic acid/ NaNO₂

Tracers: individual: ²³⁰Th, ²³⁹Pu, ²⁴¹Am, ²³³U about 50 Bq in each test

Measurement by LSC

		U	Am	Th	Pu
		%	%	%	%
	TEVA/TK221 cartridges				
load	15 mL load				
wash	18 mL 3M HNO ₃	2-5	0	0	0
	TEVA cartridge				
wash	10 mL 3M HNO3	0,1-0,2	0	0.1	0
Th strip	15 mL 9M HCl	0.3	0	97	0
Pu strip	15 mL 0.1M HCl/0.05M HF/0.03M TiCl $_3$	0.2	0	0	106
	TK221 cartridge				
wash	15 mL 4M HCI/0.2M HF	0.5	0.7	0	0
Am strip	30 mL 0.25M HCl	0.8	102	0	0
U strip	15 mL 0.1M NH ₄ HC ₂ O ₄	97	0.7	0	0
	SUM %	101-104	103	97	106

High recoveries, some U contamination (<1%) is possible!

Recovery

Determination of actinides in water samples

Determination of actinides in water samples

		Actinides determination				
		without Np		with Np separation		
800 ml water		yield	yield unc	yield	yield unc	
800 mL water.		%	%	%	%	
TAP or SEA	TAP water					
spiked with mixed	²³⁰ Th	90	8	86	7	
tracers:	²³⁹ Pu	108	7	95	7	
241 Am 23311 230Th	²³⁷ Np	-		91	9	
²³⁹ Pu, ²³⁷ Np	²⁴¹ Am	103	7	97	6	
of 0.1-0.5 Bq	²³³ U	103	7	70	7	
Ca phosphate co-precipitation,	SEA water					
ΤΕ\/Δ /ΤΚ221	²³⁰ Th	71	7	61	6	
separation,	²³⁹ Pu	91	7	87	6	
u co procipitation	²³⁷ Np	-		93	8	
μ-το-μιθτιμιατιστι	²⁴¹ Am	89	7	92	6	
α spectrometry	²³³ U	88	7	59	6	

Results

Recoveries of all An's are acceptable high: > 60%

Recoveries in TAP are higher than in SEA.

Detectable contamination in α sources:

< 1% ²³⁹Pu in ²³⁷Np source

To get high Pu recovery in α source the Pu strip solution (9M HCl) has to be evaporated, diluted.

Summary

A new procedure for the separation of U, Pu, Am-Cm and Np in water samples has been developed where Actinides are

- pre-concentrated with Ca phosphate precipitate
- chromatographically separated on TEVA/TK221 cartridges,
- determined by alpha spectrometry.

For all actinides

- chemical recoveries are acceptable high ($\geq 60\%$),
- decontamination factors are acceptable high (>100),
- resolution of the alpha sources are acceptable good (< 40 keV),
- sensitivities are acceptable high (<0.1 Bq/kg)

The whole analysis can be done in 1 day.