

Alternative rapid separation strategy for isolation of no-carrier added ⁹⁰Nb from Zr target, for application in *immuno*-PET.

Valery Radchenko¹, Dmitry Filosofov², Nikolai Lebedev², Olga Bochko², Frank Roesch¹

¹ Institute of Nuclear Chemistry, Johannes Gutenberg-University Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany;

² Laboratory of Nuclear Problems, Joint Institute of Nuclear Research, Joliot-Curie 6, 141980, Dubna, Russian Federation.

Triskem meeting, Munich, 12.11.2012

 Labeling of monoclonal antibody (mAb) with positron emitting radionuclides for tracking, visualization, and measurement the tumor gene expression

Requirements for immuno-PET nuclides

- JG
- a physical half-life paralleling the biological half-life of the antibody or antibody fragment

• a preferably low β + energy to allow high-resolution PET imaging

 a high positron branching with no or weak accompanying irradiation (β⁻, γ) to offer highsensitive PET imaging while reducing the radiation burden of the patient

• the availability of the radionuclide, *i.e.* an efficient production route

Motivation

Browne E, Firestone RB. Table of Radioactive Isotopes, Shirley VS, Editor, Wiley 1986,

JG|L

- successful labeling of monoclonal antibody (Rituximab) with ⁹⁰Nb (90% labeling after 1 hour incubation at RT)
- high *in vitro* stability (less than 7% degradation after 9 days incubation in FCS at 37°C)
- proved suitability of ⁹⁰Nb for *immuno*-PET
- **however**: previous separation strategy was too complicated and time consuming (more than 4 hours) for routine *in vivo* application
- consequently: fast and more efficient alternative separation strategy was developed

Production of ⁹⁰Nb

Target station

Target holder

Zirconium discs Ø 10 mm

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Production of ⁹⁰Nb

Irradiation parameters

- E_p : 17.5 MeV (at first foil)
- Current: 5 µA
- Irradiation : 60 min
- Batch : 724.6 MBq
- Production yield 144.9 MBq/ µA·h

Radionuclide purity EOB

Isotopes	⁹⁰ Nb	⁸⁹ Zr	^{92m} Nb	⁹⁵ Nb	⁹⁶ Nb
	14.6 h	78.4 h	10.2 d	35 d	23.4 h
%	96.76	0.29	1.79	0.42	0.74

DEUTSCHES KREBSFORSCHUNGSZENTRUM IN DER HELMHOLTZ-GEMEINSCHAFT

Previous separation strategy

Alternative separation strategy

- 28 M HF Irradiated Zr target K+ 100 ma Dowex[®] 50X8 **A**-300 mg • AG[®] 1X8 •
 - irradiated zirconium metal dissolved in 2 mL conc. HF

 cation exchange (Dowex[®] 50X8) column to filtrate unsolved particles and absorb possible contamination of 2+ and 3+ cations

- transfer to anion exchange (AG[®] 1X8) column
- absorb ⁹⁰Nb from hydrofluoric solution
- zirconium passed trough
- 5 mL of 28 M HF to reduce Zr contamination
- 1 mL 1 M HCI to remove HF traces
- elution of ⁹⁰Nb with 700 μ L 6 M HCl / 1% H₂O₂

- 700 μL of mixture 6 M HCI / 1% H₂O₂ heated 5 min. at 120 °C
- 700 μL of 12 M HCl added to increase HCl concentration

- mixture loaded on UTEVA[®] column
- 5 mL 5 M HCl to remove Zr traces
- 200 μL 1 M oxalic acid passed through
- final elution of 90 Nb with 200 μ L 1 M oxalic acid

Results

28 M HF

Separation step	Separation yield %	Decontamination factor (ICP-MS)
Dissolution	100	0
Cation+anion	99	0.97 ·10 ⁵
UTEVA	95	3.36 ·10 ⁸

- total separation 1.5 hours
- separation yield 95%
- decontamination factor > 10⁸
- < 0.77 ng of Zr
- ⁹⁰Nb in final fraction appropriate for labeling conditions (200 μL1 M oxalic acid)

Semi-automated separation module

- separation yield 90%
- faster separation (1 hour)
- similar decontamination factor 10⁸

Parameters	New separation strategy		Old separation strategy
Separation time (h)	1-1.5	\bigcirc	> 4
Separation yield %	90-95	\bigcirc	79-81
Decontamination factor Zr/Nb	10 ⁸		10 ⁷
Automation	available	\bigcirc	difficult
Final fraction	200 µL 1 M ox. acid (easy labeling protocol)		200 μL 6M HCl/ 0.01 M ox. acid (complicated neutralization procedure)

Chelator for ⁹⁰Nb

Deferoxamine (Df): chelator of choice

- best complexation with Nb compared to other chelators (DOTA, TETA, DTPA and EDTA)
- successful complexation of Nb at RT
- high stability of *Nb-Df complexes and *Nb-Df-Octreotide
- clinically approved chelator
- well established conjugation chemistry for ⁸⁹Zr

HO. N

NCS-Df

HO.

⁹⁰Nb

Conjugation of Df to mAb

Product identification:

- Macrocyclics Product ID: B-705
- Molecular weight: 752.9 g/mol
- Purity: ≥ 94%
- Desferroxamine-p-SCN
- Molecular Formula: C₃₃H₅₂N₈O₈S₂
- Appearance: white solid

15

IGI

Labeling of Monoclonal Antibody

Monoclonal antibody (IMAB362) as proof-of-principle.

100 μg of mAb (modified with desferrioxamine)
labeled with 10 MBq of ⁹⁰Nb
1 hour at room temperature and pH 6.8

Results:

- Labeling yield more than 85% (HPLC, ITLC)
- Specific activity > 85 MBq/mg (comparable with ⁸⁹Zr 180 MBq /mg)
- After purification (PD-10) more than 97% of product
- Product stable (90%) at room temperature and at incubation in FCS at 37°C for 5 days

Summary

- aim: New separation strategy of ⁹⁰Nb appropriate for *in vivo* evaluation of biomolecules (*immuno*-PET)
- efficient: 90 95% of 90 Nb with a decontamination factor of Zr / Nb of > 10^8
- fast:
 1 1.5 hours (almost four times faster than with previous separation strategy)
- semi-automated module
- labeling ⁹⁰Nb-mAb:
 > 85% after 1 h incubation at RT.
 specific activity > 85 MBq/mg
- stability in vitro: High, <10% of degradation after 5 days of FCS incubation at 37 °C

Acknowledgments

TRIGA Reactor Mainz

Flerov Laboratory of Nuclear Reaction and Phasotron facility

G. Bukalis Dr. K. Herbert

Thank you for your attention!

Prof. Dr. M. Eisenhut H. Hauser