

Entwicklung von Methoden zur selektiven Abtrennung von Scandium für radiopharmazeutische Anwendungen

Dirks, C.¹, Happel, S.², Jungclas, H.¹

[1] Radiochemie, Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Deutschland [2] TrisKem International, Bruz, France

12.11.2012

Carina Dirks

Übersicht

- Warum Scandium?
- Batch Experimente
 - Selektivität
 - Kinetik
 - Interferenzen mit Ti oder Ca
- Säulen Experimente
 - Simuliertes Ti Target
 - Simuliertes Ca Target
- Zusammenfassung
- Ausblick

Radioisotope des Scandiums

Isotope	Halbwertzeit	Strahlung	Energie	Entstehung
⁴³ Sc	3,891 Std	$\beta^{+}(100\%)$	2,221 MeV	⁴³ Ca (p,n) ⁴³ Sc
⁴⁴ Sc	3,927 Std	$\beta^{+}(100\%)$	3,653 MeV	⁴⁴ Ca (p,n) ⁴⁴ Sc ⁴⁴ Ti (n,p) ⁴⁴ Sc
^{44m} Sc	58,6 Std	β ⁺ (98,8%), EC (1,2%)	0,271 MeV 3,924 MeV	
⁴⁶ Sc	83,79 Tage	β ⁻ (100%)	2,367 MeV	⁴⁶ Ti (n,p) ⁴⁶ Sc ⁴⁴ Ca (α,n+p) ⁴⁶ Sc
⁴⁷ Sc	3,349 Tage	β ⁻ (100%)		⁴⁴ Ca (α,p) ⁴⁷ Sc ⁴⁷ Ti (n,p) ⁴⁷ Sc
⁴⁸ Sc	43,67 Std	β ⁻ (100%)	3,994 MeV	⁴⁸ Ca (p,n) ⁴⁸ Sc ⁴⁸ Ti (n,p) ⁴⁸ Sc
⁴⁹ Sc	57,2 Min	β ⁻ (100%)	2,006 MeV	⁴⁹ Ti (n,p) ⁴⁹ Sc ⁴⁸ Ca (α,2n+p) ⁴⁹ Sc

Radiopharmazeutische Anwendung

- Angemessene Halbwertzeit
- Vielfältige Zerfallsmöglichkeiten
- Gut erforschte Koordinationschemie
- PET Imaging (bspw. ⁴⁴Sc , β⁺ -Strahler)
 Therapie (bspw. ⁴⁷Sc, β⁻ -Strahler)

Vergleich der Herstellungsmethoden von Scandium

Nuklearer Prozess	Optimaler Energie Bereich (MeV)	mb
⁴³ Ca (p,n) ⁴³ Sc	$12 \rightarrow 7$	309
⁴⁴ Ca (p,n) ⁴⁴ Sc	7-8	328
⁴⁴ Ti (n,p) ⁴⁴ Sc	0,025 eV	200
⁴⁶ Ti (n,p) ⁴⁶ Sc	8-10	234
⁴⁴ Ca (a,n+p) ⁴⁶ Sc	21-34	404
⁴⁴ Ca (a,p) ⁴⁷ Sc	12-16	121
⁴⁷ Ti (n,p) ⁴⁷ Sc	9-10	144
⁴⁸ Ca (p,n) ⁴⁸ Sc	4-5	255
⁴⁸ Ti (n,p) ⁴⁸ Sc	13-14	67
⁴⁹ Ti (n,p) ⁴⁹ Sc	10	19,2
⁴⁸ Ca (a,2n+p) ⁴⁹ Sc	39	114

http://www-nds.iaea.org

C W Cheng and J D King 1979 J. Phys. G: Nucl. Phys. 5 1261

Generelles Vorgehen bei Batch Experimenten

Verteilungskoeffizienten D_w (Weight distribution coefficient)

- Wiege 50 mg der verschiedene Resins in ein 2 mL Eppendorf cap
- Füge 400 μL der jeweiligen Säure hinzu
- Cap schließen und für 30 Minuten vorkonditionieren
- Füge 1mLder Probenlösung hinzu
 - (bspw. 1 mL Multi-element Lösung)
- Cap schließen und f
 ür 30 Minuten sch
 ütteln
- Entnehme 1 mL des Überstandes, Analyse (ICP-MS)
- Alle Verteilungskoeffizienten werden dreifach bestimmt

Verteilungskoeffizienten

• hoher D_w = Extraktion

• niedriger D_w = Elution

- N_{Ao} = Nettozählrate in der A_0 Probe
- N_A = Nettozählrate in der Probe
- V = Volume der wässrigen Phase (1,4 mL)
- m_R = eingewogene Menge des Resins in g

DGA : D_w -Koeffizienten in HNO₃ (jedes Element mit 10µg/mL)

Graphik 1: D_w von Sc und ausgewählten Elementen auf DGA Resin in HNO₃ in verschiedenen pH Konzentrationen

12.11.2012

Carina Dirks

DGA : D_w -Koeffizienten in HCl (jedes Element mit 10µg/mL)

Graphik 2: D_w von Sc und ausgewählten Elementen auf DGA Resin in HCl in verschiedenen pH Konzentrationen

DGA Kinetik

Graphik 3: Kinetik von Sc auf DGA Resin in 0,1 und 2,5 M HNO₃

D_w Sc – Interferenzen – DGA

Ca Interferenzen

Ti Interferenzen

in Gegenwart von verschiedenen Mengen von Ca

in Gegenwart von verschiedenen Mengen von Ti

Zusammenfassung I DGA Resin

- \succ Stabiler, hoher Sc D_w in HNO₃
- Hohe Selektivität für Sc
- Keine Selektivität für Ca oder Ti
- Rasche Extraktion
 - Lösung zum Beladen:
 - Ti Target 2,5 M HNO₃
 - Ca Target 0,1 M HNO₃

Elution mit 0,1 M HCl für Ti- und Ca- Target

Vernachlässigbare Interferenzen!

TRU : D_w Verteilungskoeffizient in HNO₃ (jedes Element mit 10µg/mL)

Graphik 6: D_w von Sc und ausgewählten Elementen auf TRU Resin in HNO₃ bei verschiedenen pH Werten

12.11.2012

Carina Dirks

TRU : D_w -Verteilungskoeffizient in HCL (jedes Element mit 10µg/mL)

Graphik 7: D_w von Sc und ausgewählten Elementen auf TRU Resin in HCl bei verschiedenen pH Werten 12.11.2012 Carina Dirks

TRU Kinetik

Graphik 8: Kinetik von Sc auf TRU Resin in 2,5 M HNO₃

D_w Sc – Interferenzen – TRU

Ca Interferenzen

Ti Interferenzen

Zusammenfassung II TRU Resin

- ✓ Stabiler, hoher Sc D_w in 2,5 M HNO₃
- ✓ Hohe Selektivität für Sc
- Keine Selektivität für Ca oder Ti
- ✓ Rasche Extraktion
- ✓ Beladen mit: 2,5 M HNO₃
- Elution mit : 1 M HCl für Ti- und Ca- Target
 - Für Ca Target: vernachlässigbare Interferenzen!
 - Für Ti Target über 10 mg / 50 mg Resin : Ti Interferenzen!

Elutionsmethode

<u>DGA: Elutionsstudien-</u> simuliertes Ti- oder Ca-Target

Graphik 13: Elutionsstudie für ein simuliertes Ti-Target, 2 mL DGA Resin Säule Graphik 14: Elutionsstudie für ein simuliertes Ca-Target, 2 mL DGA Resin Säule

<u>TRU: Elutionsstudien-</u> simuliertes Ti- oder Ca-Target

Graphik 15: Elutionsstudie für ein simuliertes Ti-Target, 2 mL TRU Resin Säule Graphik 16: Elutionsstudie für ein simuliertes Ca-Target, 2 mL TRU Resin Säule

Zusammenfassung III

- Hohe Sc Selektivität auf DGA und TRU Resin
- Vernachlässigbare Interferenzen Ti und Ca (außer bei TRU Ti Target)
- ✓ Schnelle Kinetik
- ✓ Quantitative Wiedergewinnung von Sc in Elutionsstudien
- Exzellente Trennung von Sc

- in einer hohen Reinheit

 Ti oder Ca können in einem kleinen Volumen zurückgewonnen werden

DGA: Dekontaminationsfaktoren D_f

- Fließgeschwindigkeit : 1-3 mL/min
- 0,4 g Säulen
- Stammlösung: erhöhte Konzentration von Ca, Ti, Fe, V, Mg, K und Au
- Berechnung der Dekonfaktoren D_f für Sc-Fraktionen
 - Fraktion E1 (5 mL 0,1 M HCl):
 - D_f: Au, Ti > 10 000; V, Fe > 500
 - Fraktion E2 (2 mL 0,1 M HCl):
 - D_f: Ti, Au > 200000, Fe > 300 V > 34000

Graphik 21: Dekonfaktoren DGA Resin (Ti Target)

- Fraktion E1 (5 mL 0,1 M HCl):
 - D_f: Ca > 2500, K > 1000; Mg, Fe > 500
- Fraktion E2 (2 mL 0,1 M HCl):

Graphik 22: Dekonfaktoren DGA Resin (Ca Target)

TRU: Dekontaminationsfaktoren D_f

- Fließgeschwindigkeit : 1-3 mL/min
- 0,4 g Säulen
- Stammlösung: erhöhte Konzentration von Ca, Ti, Fe, Mn V, Mg, K und Au
- Berechnung der Dekonfaktoren D_f für Sc-Fraktionen
 - Fraktion E1 (5 mL 1 M HCl):
 - D_f: Au, Ti > 10 000; V, Fe > 100
 - Fraktion E2 (2 mL 1 M HCl):
 - D_f: Ti, Au > 6 500; Fe, V > 300

- D_f: Ca > 4000; Mg, K, Fe > 500
- Fraktion E2 (2 mL 1 M HCl):
 - D_f: Ca, Mg, K, Fe > 20 000

Graphik 23: Dekonfaktoren TRU Resin (Ti Target)

Graphik 24: Dekonfaktoren TRU Resin (Ca Target)

Ъ

Optimierte Methode

Vakuum-unterstütze Fließgeschwindigkeit (1 – 3 mL/min)

DGA resin (400 mg)

- Beladen aus 5 mL 2,5 M HNO₃ (Ti) oder 0,1 M HNO₃ (Ca)
- Spülen mit 4 mL und 2 / 3 mL 2,5 M HNO₃
- Beladen und Sp
 ülen enth
 ält ~ 100% Ti oder Ca
- Sc Elution in 5-7 mL 0,1 M HCl

TRU resin (400 mg)

- Beladen aus 5 mL 2,5 M HNO₃
- Spülen mit 4 mL und 2 mL 2,5 M HNO₃
- Beladen und Spülen enthält ~ 100% Ti oder Ca
- Sc Elution in 5-8 mL 1 M HCl
- Sc Ausbeute > 98%, hohe Dekontaminationsfaktoren

Zeit der Trennung: 12 Minuten

Kurzer Ausblick in die Zukunft

- Organische Verunreinigung der Sc-Fraktion bestimmen
- Wiedergewinnung von Ca und Ti für die Target Präparation
- Optimierung der Fließgeschwindigkeit
- Ti- und / oder Ca-Target Bestrahlung
- Analytische Verwendung (Konzentration und Aufreinigung von Sc f
 ür ICP-MS)

Vielen Dank

Prof. Jungclas, Kernchemie Marburg

TrisKem International